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HYPOTHESIS 
The diagnosis of faults in endodontic file instruments can accurately utilize signal processing 
techniques for force and vibration data collection with Fourier Transform and Wavelet 
Transform. With feature extraction done through MATLAB, I suspect that machine learning 
models trained on the features will provide very high accuracy while differentiating between 
normal and faulty tool behaviors, thereby improving the safety and efficiency of endodontic 
procedures.  
 
PROBLEM 
When the soft tissue inside people’s teeth become infected or inflamed, root canal is 
necessary to fix this. This tissue gets infected or inflamed due to deep cavities, cracked teeth, 
trauma, or repeated dental procedures. According to the American Association of 
Endodontists, around 15 million root canals are performed in the United States annually. Out 
of those 15 million patients, around 1.11 million of these patients experience a breakage of 
the endodontic tool during the procedure. This breakage can result in serious complications 
like not being able to properly clean or shape the tooth and even the possibility that 
surrounding nerves and tissues get damaged. This also carries the risk that the treatment 
could be prolonged or even fail entirely. 
 
BACKGROUND INFORMATION 
 
Fault detection- determining the problem in the given system, specifically determining 
when, where, and what happened  
Endodontic tool- specialized instruments used by dentists during root canal treatment to 
clean, shape, and fill the root canals, ultimately saving a tooth from extraction 
MatLab- a programming language and numeric computing environment that works with 
matrices and arrays 
Fourier Transform- a mathematical operation that converts a function from the time domain 
to the frequency domain 
Principal Component Analysis- dimensionality reduction technique that transforms 
high-dimensional data into a lower-dimensional set of uncorrelated principal components 
keeping as much variance as possible. 
 
RESULT 
1. The graphs to the left demonstrate the 1 second interval graphs of 
both the dynamometer and the accelerometer to see a small interval 
to determine exactly when there is something irregular throughout 
the data. Originally, the data was a little longer than 1 second, so this 
also allowed both sets of data to be an equal duration to compare 
consistent data. 
 
2. The graphs to the right ​ demonstrate the 1 second interval 
graphs overlapped with the other WaveOne Gold (WOG) endodontic 
file data. When the data is overlapped, it makes it easier to be able to 
see the trends within the data and creates an easy way to identify the 
time of an irregular force or vibration within the data through the 
abnormal spikes. Using the data from both graphs, it is shown when 
there is a correlation between the force and vibration. 
 
3. This graph is the frequency spectrum of force signals recorded 
from several WaveOne Gold (WOG) endodontic files. With a 
Fourier Transform, the time domain force signals are converted to 

 



 

the frequency domain, and the dominant frequency components in the data are displayed. 
Peaks in the spectrum indicate frequencies at which force variations are most pronounced, in 
which patterns can be determined that can be associated with the cutting dynamics or 
mechanical failures impending of the file. 
Interestingly, some files exhibit distinct peaks at specific frequencies (ex: in the range of 500 
Hz and above), which can reflect variations in force application or vibration characteristics.  
 
4. This plot displays the principal ​ component variance 
contribution of a Principal Component Analysis (PCA) run on the 
dataset. In this case, the first principal component (PC1) explains 
over 90% of the variance, meaning that it contains most of the 
important information in the data. The second principal component 
(PC2) contributes only a small amount, and the remaining 
components contribute little variance, meaning they contain mostly 
redundant or less significant information. This result shows that 
most of the variability in the force and vibration signals is 
represented using just one or two principal components, and hence, 
one can reduce the complexity of the dataset without compromising on key features for 
analysis. This is helpful because it eliminates noise and redundancy, leading to easier and 
more interpretable results. 
 

5. This table was used to analyze the ​dominant frequency and peak 
amplitude of the force signals from different WaveOne Gold (WOG) 
endodontic files used in the study. The aim was to identify the most 
significant frequency components of the force data, which could 
provide insights into repeating force patterns or anomalies during 
root canal treatment. However, the dominant frequency values are 
all zeros, which mean that either the force signals lack substantial periodic components, the 
analysis can be made to shift in the Fourier Transform process, or the signals are primarily 
comprised of low-frequency variations which were not sufficiently recorded. Despite this, the 
peak amplitude values are evidence of the maximum force exerted by any particular file and 
are helpful to detect uneven force application, excessive stresses, or variabilities in the cutting 
process. This information is helpful to aid in fault diagnosis since it indicates files that can 
experience unusually high forces during cutting, a situation that may lead to file fatigue, 
breakage, or poor cutting performance during root canal procedures. Further refining of the 
frequency analysis would achieve more understanding of the mechanical action of the files 
and allow for better detection of potential defects.  

6. This feature correlation heatmap was used to study the 
correlations among the various extracted features from the 
project's force and vibration signals. The heatmap visually 
illustrates the strength of the correlation among various 
features, from -1 to 1. A correlation near 1 indicates a 
strong positive correlation where both features increase 
together, and a correlation near -1 indicates a strong 
negative correlation where one feature increases as the other 
decreases. Using different statistical and signal processing 
features extracted from the force and vibration signals, they help quantify different aspects of 
the signal behavior and can be used for fault diagnosis. From the heatmap, we observe that 
Mean and RMS (Root Mean Square) values are highly correlated (0.9971), as might be 
 



 

anticipated since RMS is influenced by the signal's overall magnitude. Similarly, Variance 
and Standard Deviation (StdDev) share an almost perfect correlation (0.9986), since they 
both quantify signal dispersion. On the other hand, Peak-to-Peak (P2P) values are moderately 
correlated (0.682) with Variance and StdDev, suggesting that large fluctuations in force result 
in higher variance in the data. Interestingly, the Dominant Frequency feature is missing 
(NaN), in line with the observation that no dominant frequency was able to be detected in the 
force signals. Within the project, this correlation analysis helps in machine learning model 
feature selection. Highly correlated features provide redundant information, and therefore 
only one of them may be needed to train a fault detection model. Additionally, weakly 
correlated features may have unique information useful for fault classification in the 
WaveOne Gold (WOG) files. By being aware of these correlations, the feature set can be 
optimized for improving fault diagnosis accuracy and 
model efficiency. 

7. The confusion matrices presented are the output of a 
fault detection model, which was trained to distinguish 
between healthy and faulty cases using derived features 
from force and vibration sensor measurements. The model 
is trained with an 80-20 train-test split, where 80% of the 
data available was used for training and the remaining 20% 
was reserved for testing. This split ensures that the model is 
validated on unseen data to estimate its real performance. 
However, due to the small size of the dataset, different runs 
of the model produce different results, as the random 
selection of test examples heavily affects classification 
outcomes. In the first confusion matrix, we find that there is 
a 50% accuracy rate, which indicates that the model 
correctly classified one normal and one defective case but 
failed in another case. The second matrix shows the same 
division, indicating that the model is struggling to 
generalize. The final matrix registers a 100% accuracy, but 
the test set consisted solely of faulty cases and not normal 
ones, suggesting the model was never tested against the 
normal ones. This suggests there could be a bias in data 
partitioning and emphasizes how important it is to have 
even representation of normal and faulty cases in the test 
set. The method used in the current research, principal 
component analysis (PCA) to extract features and ensemble 
learning for classification, is a well-structured strategy, but 
optimization of dataset size and train-test consistency is 
required for an improved performing model.  

 

 

ABSTRACT 
This study aimed to advance the automatic fault detection system for the endodontic file 
using MATLAB signal processing. Unexpected tool failures during root canal treatments 

 



 

complicate procedures and increase patient risk, making early fault detection essential for 
safer and cost-effective dental procedures.  

The research’s purpose is to reduce visual inspection and instead use data-based real-time 
feedback for dentists. Automated monitoring would increase patient safety with the sense of 
prolonging tools and diminishing costs in saving failures. Moreover, early detection improves 
efficiency of procedures and diminishes risks with more reliable root canal treatments. For 
data collection, dynamometer and accelerometer sensors were exploited. Fourier Transform 
and Wavelet Transform were used to process the signals toward the goal of delivering 
frequency and energy-based features.  

The FFT highlighted that if the dominant frequency was small, its magnitude varied greatly 
between trials, suggesting that variations in tool resistance and stress in the tool. Similarly, 
wavelet energy levels fluctuated in various layers of decomposition, indicating a non-uniform 
application of force and possible degradation of the tool over time. Statistics demonstrated 
that a lot of standard deviation values were high in energy and dominant frequency, indicating 
the presence of abnormal force patterns and stress fluctuations. These findings show 
MATLAB signal processing can diagnose device faults before failure.  

Frequency magnitude and wavelet energy variability are strong predictors of wear, 
microfractures, or loss of stability. Future work needs to expand the database out, enhance 
learning models, and add real-time feedback to practice to enhance the endodontic treatment 
safety and accuracy. 

IMPACT 
The scope of this project extends far beyond simple technical innovation in machine 
learning—it has significant implications for dentistry, endodontics, and medical device 
reliability. Root canal treatments (RCTs) are among the most common dental procedures 
worldwide, with an estimated 15 million root canals per year in the United States alone and 
over 40 million worldwide.  

The procedure involves removing the infected or damaged pulp from inside the tooth, 
disinfecting the canal, and closing to prevent infection. The endodontic file is a crucial 
element of the procedure, a type of instrument for cleaning and preparing the root canal. 
However, one of the most serious hazards of RCT is file fracture, which in approximately 7% 
of cases are based on instrument type, technique, and patient anatomy. When a file fractures 
inside the canal, it can lead to incomplete cleaning, persistent infection, and even failure of 
the whole procedure, which in some instances requires surgical removal or tooth extraction.  

This project envisions overcoming this risk through the development of a machine 
learning-based fault detection system capable of identifying early subtle signs of instrument 
fatigue and possible failure prior to their occurrence, thus improving patient safety and 
clinical outcomes. Utilizing high-frequency force and vibration sensor data, the system has 
the potential to improve quality control during dental tool manufacturing, assist clinicians 
with real-time monitoring, and reduce complications due to RCT failures.  

If this technology were maximized to its optimum, it might be used in smart endodontic 
handpieces, which would alert practitioners to potential issues before a file reaches a failure 
point. At over $1.3 billion spent on endodontic treatment annually in the U.S. alone, 
extending the life of instruments and reducing failure rates would equate to cost savings and 

 



 

better patient care on a significant level, a revolutionary leap towards the future of 
AI-activated dental medicine. 

 

 

 

 

 

 

 

 

 

RESULT 
1. Data Collection: 

-​ Collect 10 recordings each of the 
dynamometer for force signals and the 
triaxial ​ accelerometer for 
vibration signals for every sensor 
during experimentation of root ​
canal treatment (RCT). 

2. Data Preprocessing: 

-​ Extract force signals only out of the 
dynamometer data. 

-​ Extract vibration signals from the accelerometer data. 
-​ Segment each signal into 1-second windows. 

3. Signal Processing and Feature Extraction (Using MATLAB) 

-​ Conduct FFT analysis on each 1-second segment for determination of dominant ​
frequency and magnitude of the dominant frequency. 

4. Feature Engineering and Selection 

-​ Combine the frontier frequency-domain and time-frequency features. 

5. Machine Learning for Fault Diagnosis 

-​ Train machine learning models with these extracted features. 
-​ Evaluation in terms of performance. 

6. Fault Detection and Diagnosis 

-​  Put the trained model through new experimental data for prediction of faults of ​ the 
tool. 

 



 

-​ Compare the outputs of machine learning against the existing tool conditions to ​
validate the effectiveness. 

Independent Variables  

-​ Force signals from the dynamometer. 
-​ Vibration signals from the triaxial 

accelerometer. 
-​ Condition of the endodontic file 

 

Constants 

-​ Type of endodontic file 
-​ Sampling frequencies:​

Force signals: 71 kHz​
Vibration signals: 51.2 kHz 

-​ Data collection method 
-​ Experimental conditions 
-​ MATLAB processing techniques 
-​ Machine learning models 

Dependent Variables  

-​ Dominant frequency magnitude 
-​ Wavelet energy levels 
-​ Statistical variations in force and 

vibration signals  
-​ Predicted fault classification from 

the machine learning model 

 
Control Group 

- Data from nondamaged endodontic tool 

 

CONCLUSION 

Currently, the fault detection model is at a level where it is practically reliable, accurately 
labeling buggy files and classifying some regular files as buggy. This is a significant 
improvement over the past iterations, when answers were highly unstable, plummeting 
amazingly from run to run. By some of the finetuning along the way, including optimizing for 
feature selection and experimenting with alternative sensitivity levels, the model has reached 
sufficient stability to detect faults at a high rate of confidence, though some remaining 
refinements need to be performed to minimize false positives. The most daunting challenge in 
working through the exercise was finding the optimal balance of sensitivity. 

Originally, the model was either over-conservative and flagged too many files as defective or 
too lenient and missed defective cases. In order to correct this, I experimented with different 
classification thresholds, adjusted the feature selection process using PCA, and experimented 
with other machine learning techniques like other decision tree ensembles. These 
improvements significantly improved the model's reliability such that it can identify faults 
with a satisfactory level of accuracy when running repeatedly. While this version of the 
model is the best to date, some faulty classifications of normal files as faulty indicate that 
refinements are still necessary and will be made in the future to continue this project further,. 

The existing system is biased toward a conservative system, which is to say it plays it safe by 
indicating potential errors even if the file can be perfectly fine. This is an improvement over 
missing a real defect, but in future work, I hope to have the model be 100% accurate by 
making further improvement on feature extraction, improving dataset quality, and research 
into more complex machine learning techniques such as deep learning or combination 
models. In the next phase, I plan to incorporate a larger dataset to reduce variability, use 
K-Fold Cross-Validation to make it more reliable, and utilize an adaptive classification 
 



 

threshold that adjusts itself based on the type of input data. All these improvements will 
ensure that the model eliminates false positives without losing its ability to detect true faults 
efficiently. 

Though still room for improvement, the system in its current form is already a firm 
foundation for fault detection in real-world endodontic instruments, and whatever additional 
improvements are developed will make it completely accurate. 
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